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Abstract 

The human visual system has a lower spatial resolution in 
the periphery than in the fovea. This property may be useful 
to reduce system bandwidth in applications where the 
observers' fovea is allowed to scrutinize a very small 
portion of a picture. For example, an image frame in a video 
or movie is presented for less than 100 milliseconds. When 
viewed with such a short duration, most parts of the frame is 
seen by the peripheral retina. Since the resolution of the 
spatial resolution is low, one could reduce information in 
image areas that will be viewed by the periphery without 
causing perceptible image degradation. The purpose here is 
to present a quantitative metric for evaluating the image 
quality for such non-uniform degradations, by considering 
visual performance in the periphery. According to this 
metric, the image difference between the degraded image 
and the original is decomposed into five levels of pyramid 
error images based on a measured or assumed fixation 
position. The contrast of each error image is scaled by a 
contrast threshold map that is a function of spatial 
frequency, eccentricity, and image content. Finally, the 
perceived image degradation is calculated as the square root 
of the sum of the mean squared contrast over levels and 
color channels. Experiments were conducted to obtain 
subjective image quality with non-uniformly degraded 
images using two different algorithms. Five observers 
participated in the experiment and were instructed to rate 
the image quality on a ratio scale. The resulting image 
quality metric accounts for 92% of the variance in the image 
quality ratings. As a benchmark, RMS difference accounts 
for only 67% of the variance. 

Introduction 

Human vision is spatially inhomogeneous. When operating 
under photopic luminance levels, human vision has its 
greatest spatial and chromatic resolution at the fovea and 
lower spatial and chromatic resolution in the periphery. This 
property may be useful in applications where image 
communication demands very high system bandwidth. For 
example, the required bandwidth can become exceedingly 
high when the field of view of the video screen needs to be 

large, such as in an immersive entertainment venue. In these 
environments, the time interval between video frames is 
generally very short and precluding saccadic eye 
movements within a frame. In this environment, the human 
fovea is not able to scrutinize more than one location of a 
single frame and therefore, most parts of the image frame 
are seen by the peripheral retina. In these environments, 
there is an opportunity to reduce the required 
communication bandwidth by using eccentricity-dependent 
filtering methods to eliminate some information from the 
image. The question is how to evaluate the perceptible 
image degradation when the information reduction is not 
uniformly allocated in space. 

Usually, vision models consider only foveal visual 
performance in estimating the perceptible image 
degradations (e.g., Refs 1 to 3), under an assumption that 
there will be enough viewing time for the fovea to scrutinize 
the entire image. In motion pictures, however, it is most 
likely that image degradations in the peripheral retina are 
often not detected, although one would predict they are 
perceptible degradations based on a foveal vision model. 
Therefore, if one is to model the image quality of imaging 
systems that take advantage of the non-homogeneity of the 
human visual system, one must incorporate peripheral 
visual performance into the estimation of the perceived 
image degradation. We are not aware of any models in the 
existing literature, especially for estimating the magnitude 
of visible degradation. The work of Peli4 and Geisler and 

5Perry, however, are closely related to this topic and they 
are useful for the development of such a model. 

Peli4 suggests that a local contrast metric can correlate 
to the perceived contrast in an image. In calculating this 
metric, the image is first decomposed into several frequency 
bands, i.e., pyramid error images. The amplitude of each 
band is scaled by the luminance value obtained from all 
lower frequency bands. Finally, the perceived contrast is a 
combination of the scaled contrast over all the bands. This 
particular model does not include peripheral properties, but 
it provides a method to estimate suprathreshold magnitudes. 

5The work of Geisler and Perry concerns the filtering of 
image content at different eccentricities. In their method, an 
image is also decomposed into a pyramid of error images. 
The algorithm keeps only the image content at each band 
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that is expected to be visible based on a contrast threshold 
map, which varies with eccentricity and spatial frequency. 
Although this filtering method matches human visual 
performance at different eccentricities it does not provide a 
metric to evaluate the final image quality. 

The purpose here is to develop a quantitative metric of 
image degradation that matches subjectively perceived 
image quality, using some model components that have 
been discussed in Refs. 4 and 5. For a comparison, we will 
also compute the root-mean-square error, as well as CIELab 
∆E metric, between a foveated image and its original. 

Peripheral Visual Performance 
6Based on the study of Peli et al., the contrast threshold for 

detecting a patched grating of spatial frequency f against a 
uniform field at an eccentricity r can be described as 

Ct(r, f) = Ct(0, f) exp( k f r), (1) 

where Ct(0, f) is the contrast threshold at the fovea, and k is 
6a parameter. In their formulation of this equation, Peli et al. 

fit this equation to data from six reports in the literature that 
showed how the contrast threshold of monochromatic 
gratings varied with spatial frequency and eccentricity. 
These fits demonstrated that the k value ranged from 0.030 
to 0.057. Peli and Gary7 further showed that this equation is 
useful for estimating image degradation in real complex 
images. 

Figure 1. Contrast threshold versus eccentricity. The visual stimuli 
were grating patches with spatial frequency ranging from 0.5 to 
16 cpd. The thresholds were calculated based on Eqs. 1 and 2, 
with the k, N, h, s, and a being 0.045, 0.024, 0.058, 0.1 cpd, and 
0.17 degree, respectively. 

Equation 1 gives the relative human contrast threshold 
at different eccentricities. To describe the contrast threshold 
completely, one also needs to determine the contrast 

8threshold at the fovea. Yang et al., developed a model to 
capture foveal performance, a simplified version of this 
equation can be expressed as: 

Ct(0, f) = [N+ h s2/(f2 + s 2)] exp( a f), (2) 

where, N, η, σ, and α are parameters. The parameter values 
based on the study of Yang and Stevenson9 are 0.024, 0.058, 
0.1 cpd, and 0.17 degree, respectively. The calculated 
contrast threshold versus eccentricity at six different spatial 
frequencies according to Eqs. 1 and 2, and a nominal set of 
parameter values are shown in Fig. 1. 

Image Preparation 

The purpose of creating foveated images is to allow the 
transmission of large, high-resolution images with the least 
possible information from the original image while allowing 
minimal perceptual degradation. We consider two foveated 
algorithms here. 

Kortum and Geisler10 developed an algorithm to sample 
the original image based on the required sampling interval 
at different eccentricities. The sampling intervals can also 
be calculated from Eq. 1. The cut-off frequency fc at an 
eccentricity r can be defined by setting the contrast 

2threshold Ct to 1, which gives fc = - {ln[N + ησ2/(fc + 
σ2)]}/(α + k r), and it can be further approximated to 

fc = - ln(N) /( a + k r), (3) 

when the cut-off frequency fc is much higher than s, which 
is often the case. Any frequency components that are higher 
than the cut-off frequency would not contribute to visual 
perception, and thus can be discarded. On the other hand, 
one needs to make sure that lower frequency components up 
to the cut-off frequency fc, i.e., the Nyquist frequency, will 
be retained. To satisfy this condition, the sampling interval 
should not be larger than 

∆x = 1/(2fc) = - 0.5 ( a + k r)/ ln(N). (4) 

In the Kortum and Geisler approach, the original pixels 
that are within the sampling widow are assigned with their 
mean value. This sampling was called a 'SuperPixel'. 

The theoretical feature of frequency analysis in human 
vision has not been used in the SuperPixel. Geisler and 

7Perry further developed a foveated multiresolution 
pyramid. In this approach, different levels of the pyramid 
were circularly truncated based on the estimated cut-off 
spatial frequency of the visual system at different 
eccentricities. The reconstructed image from the zone
limited pyramid contains fine structure at the center of the 
fixation, and it gets more and more blurred towards the 
peripheral retina. This is the so-called foveated 
multiresolution pyramid (FMP). 

One drawback of this particular approach is that it 
could produce visible hard boundaries between zones. To 

7eliminate this nuisance, Geisler and Perry smoothed the 
transition boundaries in a somewhat arbitrary way. 

In the current study, we do not truncate each pyramid 
level into circular zones. Instead, we employ a filtering 

4technique that was proposed by Peli. In this method, one 
computes a contrast threshold map based on Eqs. 1 and 2 
and the peak frequency of the pyramid level, and uses the 
contrast-threshold-map to threshold the image content. 
Whenever the image contrast of a specific frequency band is 
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below the corresponding visual contrast threshold, the 
image contrast is set to zero, that is, thresholded. All other 
image content is kept unchanged. In this way, the foveated 
zones are not circular, but have irregular boundaries. The 
modified approach does not produce hard boundaries (see 
Fig. 2). 

Figure 2. Examples of the degraded images of a degradation level 
using the FMP algorithm. The crosses at the upper-left corner of 
each of the images indicate the fixation position. 

Subjective Image Quality Evaluation 

The purpose of this experiment is to obtain visual 
performance data on suprathreshold image degradation, 
thus, for each of the above-mentioned algorithms 
(SuperPixel and FMP), we created eight degraded images 
for each original image by scaling the contrast threshold 
Eqs. 1 and 2. 

Figure 3. Subjective ratio scales versus degradation level (images 
#0 to #8) for the five observers, with (A) the scene DISNEY, and 
(B) the scene TAXI, processed with the FMP algorithm. 

The perceivable image degradation is reflected in the 
subjective image quality scale in reference to the original 
non-degraded image, (i.e., image #0). Figure 3 shows the 
subjective image quality scale at different image 
degradation levels with the FMP algorithm. The data points 
are geometric means over 20 repetitions for each observer. 
The dark heavy lines in each panel show the geometric 
means over the five observers. 

The results of the SuperPixel algorithm are shown in 
Fig. 4. These curves are similar to those shown in Fig. 3. 
The main difference is the image-processing algorithm. 

It is helpful to clarify here that the image displayed 
prior to the start of a run was the original scene, i.e., image 
#0, and the observers were instructed to assign a number of 
100 to this image. It is interesting to see that this scale held 
quite well through all the subsequent trials, as the mean 
scores for each observer were not far from 100 when 
evaluating the image #0. Furthermore, as the four heavy 
curves show, the average scores across observers for image 
#0 are very close to 100. 

Figure 4. Subjective ratio scales versus degradation level (images 
#0 to #8) for the five observers, with (A) the scene DISNEY, and 
(B) the scene TAXI, processed with the SuperPixel algorithm. 

Objective Image Quality Evaluation 

As benchmarks, we first computed the root-mean-square 
error, as well as CIELab ∆E metric, between a foveated 
image and its original. No spatial inhomogeneities of the 
visual system are considered in the benchmark metrics. We 
will develop a metric based on human vision performance 
that varies with eccentricity and spatial frequency. 

Physical RMS Difference Metric 
RMS error is an often-used metric for measuring the 

difference between an altered image and its original. It has 
been reported that the RMS error metric does not match the 

11perceptual difference of the images, nevertheless, we use 
this metric to serve as a benchmark. The computation of the 
RMS difference is straightforward. The digital file of the 
original scene is represented by I0, and a degraded image by 
Id. The difference image in terms of luminance is 

D(i, j, k) = [ Id(i, j, k) - I
0(i, j, k)] lum(k)/255, (5) 

where, j and i index the coordinates in x and y directions, 
respectively, and k indexes one of the RGB channels. The 
array lum contains the luminance values of the R, G, and B 
channels at the code value 255. The variance of the image 
difference for each channel is 

N M 

V (k) = ∑ ∑ D(i, j, k) 2 / NM,  (6) 
i = 1 j = 1 
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where, N and M are the vertical and horizontal image sizes, 
respectively. The RMS difference metric is defined here as: 

RMS = . )(3
1 kV 

k ∑ = (7) 

For each degraded image, we calculated the RMS 
difference and plotted it against the subjective rating score 
of the same image in Fig. 5. The rating scores are the 
geometric means shown in Figs. 3 and 4, with each of the 
curves normalized to a maximum value of 100. Therefore, 
all of the original images should have a rating score of 100 
and an RMS difference of 0. The dashed line is a linear fit 
of the data that cuts across the coordinate (100, 0). Sixty 
seven percent of the variance in the data points is accounted 
for by the linear regression line. 

Figure 5. The relationships between the metric of RMS luminance 
difference and the subjective rating score, with the FMP processed 
TAXI (open squares) and DISNEY (filled squares) and with the 
sub-sampled TAXI (open circles) and DISNEY (filled circles). 

It is obvious that the RMS difference does not share a 
strong linear relationship with the subjective rating score. 
Looking carefully, we can see that for degraded images that 
have a similar rating score, the DISNEY (filled symbols) 
scene tends to have a larger RMS difference than the TAXI 
(open symbols) scene does. Furthermore, the SuperPixel 
(circles) images tend to have a larger RMS difference than 
FMP (squares) images do. 

Mean CIELab ∆E 
It is well understood that human visual response is a 

nonlinear function of the input luminance. The CIELab 
color space intends to provide a space that correlates more 
or less linearly to the visual perception of uniform colored 
patches (see Ref. 12). 

Therefore, we want to check whether the CIELab ∆E 
metric correlates well to the subjective quality 
measurements. In the calculations, we first converted the 
image RGB code values to XYZ values based on the 
measured chromaticity and luminance values of the R, G, 
and B channels. The CIELab L*, a*, b* values were 
calculated following their definition formulas (see Ref. 12, 

page 220), with the white point chosen to be the color with 
the R, G, and B values of 255. The ∆E map is calculated as, 

∆E(i, j) = ), (), (), ( 2 *2 * 2 * jibjiajiL d d d ∆+ ∆+ ∆ . (8) 

The mean ∆E is defined as 

Mean_ ∆E = . / ), ( 2 

1 1 

NM jiE
M 

j 

N 

i

∆∑ ∑ 
==

(9) 

For each degraded image, we calculated the Mean_∆E 
value and plotted it against the subjective rating score of the 
same image in Fig. 6. For all the original images, again, 
have a rating score of 100 and a Mean_∆E of 0. The 
subjective rating scores are the same as those in Fig. 5. The 
dashed line is a linear regression of the data points. This 
regression equation accounts for 56% of the variance in the 
data, which is lower than the variance accounted for by the 
RMS metric. 

Figure 6. The relationships between the CIELab mean ∆E 
difference and the subjective rating scores, with the FMP 
processed TAXI (open squares) and DISNEY (filled squares) and 
with the sub-sampled TAXI (open circles) and DISNEY (filled 
circles). 

Scaled RMS Difference with Contrast Threshold 
From Fig. 1, we know that human vision weights image 

information differently, based on the frequency content and 
retinal location. Thus, it is reasonable that the simple 
physical models using either RMS difference or Mean_∆E 
do not correlate well with the subjective scores of image 
degradation. One reason for this is that the difference in the 
images at a very high spatial frequency or at a larger 
eccentricity, should be less perceptible if the same 
difference is at a lower spatial frequency or near the fovea. 

To implement the eccentricity and spatial frequency 
dependent visual behavior in the difference metric, we 
follow the basic approach proposed by Peli4 and Geisler and 

5Perry. We first decompose the difference image as 
determined by Eq. 5 to five frequency-bands of error 
images DB(i, j, k, l). The contrast at each frequency band 
and location is scaled by the corresponding contrast 
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threshold to obtain the visibility value at each location, 
band, and channel: 

VB(i, j, k, l) = DB(i, j, l, k)/mean_lum(k)/Ct(r(i, j), f(l)), (10) 

where, l indexes one of the five frequency bands, and the 
array mean_lum contains the mean luminance values of the 
R, G, and B channels of the image. Ct is the contrast 
threshold determined at eccentricity r and peak frequency f 
(see Eqs. 1 and 2). The variance of the image difference, 
indicated by visibility, for a given band and channel (l , k) is 
then: 

N M 

V (k,l) = ∑ ∑ VB(i, j,k,l)2 / NM. (11) 
i=1 j =1 

The square root is computed for the summed variance 
over different bands and channels to obtain the scaled RMS 
visibility: 

RM = . ), (
3 

1 

5 

1 

klV 
k l
∑ ∑ 

==
(12) 

For each degraded image, we calculate the scaled RMS 
visibility metric and plot it against the subjective rating 
score of the same image in Fig. 7. For all the original 
images, again, they have a rating score of 100 and a scaled 
RMS visibility of 0. 

Figure 7. The relationships between the metric of the scaled RMS 
visibility and the subjective rating scores, with the FMP processed 
TAXI (open squares) and DISNEY (filled squares) and with the 
sub-sampled TAXI (open circles) and DISNEY (filled circles). 

The dashed line is a linear regression of the data points. 
This metric accounts for 91% of the variance in the data. It 
is obvious that the scaled RMS visibility has a nice linear 
relationship with the subjective rating score, a great 
improvement from the benchmark metrics (i.e., the physical 
RMS difference and mean CIELab ∆E). However, the 
scaled RMS visibility still tends to over estimate the 
DISNEY (filled symbols) to the TAXI (open symbols) 
scene. Furthermore, the circle symbols (SuperPixel 

algorithm) show a steeper slope than the square symbols 
(FMP algorithm) do against the subjective rating score. 

Scaled RMS Difference with Masking Threshold 
As we mentioned earlier, the contrast threshold 

equations were based on the visual performance for 
detecting a grating against a uniform background field. The 
existence of a patterned background, in general, would 
result in an increase of the contrast threshold. The amount 
of threshold elevation increases as the contrast of the 
background field increases when the contrast is at a 
suprathreshold level.13,14 As we look at the original DISNEY 
and TAXI scenes, one can see that the DISNEY scene is 
crowded and has a higher overall contrast than the TAXI 
scene. Based on a calculation of the physical RMS contrast, 
the DISNEY scene has an RMS contrast value of 20 cd/m2 

and the TAXI scene has a value of 16 cd/m2. The difference 
in the RMS contrast and the related potential masking effect 
might explain why the RMS visibility for DISNEY is over 
estimated. 

Although it is easy to describe the masking effect 
qualitatively, it is a difficult task to describe the effect 
quantitatively, especially when a complex image pattern is 
involved. Therefore, here we approximate the contrast 
threshold, Cm, in the presence of a pattern background as 
follows: 

Cm(r, f) =Ct(r, f) (1 + 4 pm(r, f)), (13) 

where Ct is the contrast threshold with a uniform 
background, and pm is the absolute value of the contrast 
map of the original image I0. The value 4 is an empirical 
scaling factor for the masking strength that produced a good 
match between the DISNEY and TAXI scenes. 

The contrast threshold Ct in Eq. 10 is replaced by the 
masked contrast threshold Cm to calculate the visibility 
values and the scaled RMS visibility. For each degraded 
image, we calculated the scaled RMS visibility metric that 
included the masking effect, and plotted it against the 
subjective rating score of that image in Fig. 8. The dashed 
line is a linear regression of the data points, and it accounts 
for 92% of the variance in the data. The masking 
consideration here improved the linear prediction slightly. 
Now the metric is about neutral to either the DISNEY or the 
TAXI scenes, as we can see that the filled and open symbols 
in the figure are nicely overlapped. However, the 
improvement is marginal. The circle symbols (SuperPixel 
algorithm) still show a steeper slope over the square 
symbols (FMP algorithm) against the subjective rating 
score. 

Conclusions 

As one would expect, the physical RMS difference metric 
does not correlate well with the subjective rating score of 
foveally processed images. The CIELab ∆E provides even 
worse predictions for this class of images. 

The scaled RMS visibility metric, which is based on 
very simple visual performance model, provides a nice 

28 



IS&T's 2002 PICS Conference 

linear prediction of the subjective rating scores. The 
inclusion of a model of the masking effect further improved 
the prediction, and handles well the difference in the 
original images. However, this metric still leaves some 
discrepancy for predicting the RMS visibility when the 
images are processed with different algorithms, namely, 
FMP and SuperPixel. 

Figure 8. The relationships between the metric of RMS visibility 
with masking considered and the subjective rating scores, with the 
FMP processed TAXI (open squares) and DISNEY (filled squares) 
and with the sub-sampled TAXI (open circles) and DISNEY (filled 
circles). The dashed line is a linear fit of the data that cuts across 
the coordinate (100, 0). 92 percent of the variance in the data 
points is accounted for by the linear regression line. 

The image degradations produced by the two foveated 
algorithms are distributed quite largely in space. At this 
stage, it is hard to predict how the metric correlates with the 
image degradations within a local area. 
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